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The bleomycins (BLMs)1 are clinically used antitumor 
antibiotics2 that bind and degrade DNA3 and RNA4 selectively 
in the presence of O2 and certain metals. Bleomycin contains 
at least two functional domains: a metal binding domain 
required for reductive activation of O21 and DNA binding5 and 
a DNA binding domain comprised of the bithiazole (Bit) and 
C-terminal substituent (spermidine (Sp) in BLM A5, Figure 1). 

NMR spectroscopy has been used to investigate the nature 
of BLM binding with various metal ions6 and DNA.7 However, 
the absence of intermolecular NOEs7 and the continuing uncer­
tainty concerning the exact metal ligands6 have precluded 
definition of the nature of DNA binding by metallobleomycins. 
Presently, we use Zn(II)-BLM A5 and a DNA octanucleotide 
(d(CGCTAGCG)2) that is a particularly efficient substrate for 
BLM8 to address the issue of DNA binding. The key observa­
tions of six intermolecular BLM-DNA NOEs and the lack of 
perturbation of DNA sequential connectivities upon BLM bind­
ing9 have permitted us to utilize molecular dynamics calcu­
lations to develop a model of DNA binding by Zn(II)-BLM A5. 

Proton assignments for Zn(II)-BLM A5 alone and free 
d(CGCTAGCG)2

10 were established by means of DQF-COSY11 

and NOESY12 experiments (supplementary material, Tables 1 
and 2). Zn(II)-BLM A5 binding did not disrupt the C2 symmetry 
of the duplex, indicative of fast exchange; consistent with this, 
only one set of drug resonances was observed. In addition, it 
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Figure 1. Structure of bleomycin A5. 

was clear from the DQF-COSY spectrum of the Zn-BLM 
complex that the octamer remained in a B-form conformation.13 

Both minor groove binding and (partial) intercalation models 
have been proposed for DNA binding by the bithiazole and 
C-terminal substituent of BLM.7cl4 We also obtained data that 
support both models. Consistent with intercalative binding, 
upon admixture of Zn-BLM and DNA, we observed broadening 
and upfield shifting of the aromatic bithiazole (Bit 5, 0.18 ppm; 
Bit 5', 0.52 ppm) and base-paired thymidine4 and guanosine2 
imino protons (0.1 ppm).15-16 However, the data do not support 
a classical mode of intercalation, as the sequential connectivities 
of base and sugar protons in the NOESY spectrum were not 
disrupted (Figure 2).1718 In addition to the lack of disruption 
of the NOE walk,15"19 strong supportive evidence for groove 
binding derives from the finding of intermolecular NOEs 
(supplementary material, Figure 1 and Table 3) between Sp 3 
and Bit 5 of BLM with adenosines H2 in the minor groove 
(Figure 3).20 Also, protons in the /3-hydroxyhistidine (His a) 
and methyl valerate moieties (VaI Me) had intermolecular NOEs 
to minor groove protons (cytidine? H4' and H5',5") (Figure 3). 
Some protons in the BLM metal binding domain were also 
shifted downfield, consistent with minor groove binding.15a'19 

Analysis of the intermolecular BLM-DNA NOEs21 allows 
placement of a folded BLM structure22 in the minor groove of 
d(CGCTAGCG)2. Molecular dynamics calculations23 suggest 
a possible structure for the Zn(II)-BLM A5 complex that is fully 
consistent with the observed NMR-derived distance data (Figure 
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Figure 2. Expanded NOESY contour plot (300 ms mixing time, 35 
0C in D2O. pD 7.0. containing 20 m.M NaCl) for Zn-BLM A 5 -
d(CGCTAGCG);. correlating distance connectivities between base 
(H8.6) and sugar (H2',2") protons. The tracing outlines connectivities 
between base protons and 5'-flanking sugar H2" protons. 

5' — C , — G 2 — C 3 — T 4 — A 5 — G 

Figure 3. Schematic diagram showing the six intermolecular NOEs. 
Assignments: 1, C7 H4'-His Ha; 2 C7 H4'-Val Me; 3, C7 H5' ,5"-
VaI Me; 4, T4 H3'-Gul H6, H6'; 5, A; H2-Bit 5; 6, A5 H2-Sp 3. It 
was not possible to distinguish between the two CHi groups of the 
methyl valerate moiety. 

4), although this structure is almost certainly not unique.24 BLM 
(light blue) is positioned in the minor groove of the octamer 
(red), with Zn(II) (gold) at a distance of 3.3 A from cytidine7 
H4' (red ball), i.e., the atom abstracted to initiate DNA 
degradation.1,8 Hydrogen-bonding interactions (yellow arrows) 
are present between the cationic spermidine C-terminus and the 
phosphate and ribose oxygens and between the A-ring bithiazole 
N (Figure 1) and guanosine* NHi. ' 4 The metal binding domain 
occupies a widened minor groove25 in the B-form duplex; AIa 
NH2 is H-bonded to a DNA backbone oxygen. 

Further studies employing other DNAs and BLMs are 
underway to allow us to test and refine this model. 
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Supplementary Material Available: 2-D NMR spectrum 
highlighting the intermolecular B L M - D N A NOEs; tables 
showing 1H chemical shifts for Zn-BLM A5, d(CGCTAGCG)2 , 
and the Zn-BLM A 5 -d(CGCTAGCG) 2 complex; and a cor­
relation of the model to the NOE distance data (7 pages). This 

Figure 4. Model of the Zn(II)-BLM A,-d(CGCTAGCG)2 complex 
that satisfies the NOE restraints to within 0.2 A. BLM (light blue) is 
positioned in the minor groove of the B-form octamer (red). The six 
intermolecular NOEs are shown as yellow lines; the apparent length 
difference is due to perspective only. H-bonding contacts are shown 
as yellow arrows pointing toward the hydrogen atoms. The metal ion 
(gold ball) is 3.3 A from C7 H4' (red ball). 

material is contained in many libraries on microfiche, im­
mediately follows this article in the microfilm version of the 
journal, and can be ordered from the ACS; see any current 
masthead page for ordering information. 

(21) Because the individual duplex strands cannot be distinguished, there 
is an ambiguity in the assignments. Molecular modeling yielded lower 
energy .structures using the strand-specific assignments shown in Figure 3. 
Also, Bit 5' appeared to show contacts to Ti H6 and Cj H6, which lie in 
the major groove. Although line broadening and spectral overlap make this 
assignment tentative, this may reflect a second binding mode for BLM. 

(22) An intramolecular NOE cross peak between His 2 and Thr Me 
requires the close spatial proximity of these domains. 

(23) This model was developed using the Insight II/Discovcr program 
and the Biosym CVFF force field. Heme parameters provided with Insight 
Il were used to model BLM-mctal ion interaction. The five BLM ligands 
identified previously'* were arranged around the metal in a square pyramid 
arrangement, wilh the Man carbamoyl as the axial ligand. Thirty starting 
structures were generated using the simulated annealing protocol (Nilges. 
M.; Clore, G. M.; Gronenborn. A. M. FEBS Un. 1988, 229, 317); of these, 
18 structures with the lowest energies were minimized initially using 100 
steps of a steepest descents algorithm and further using 30 000 steps of 
conjugate gradient minimization (178 NOE restraints. 23 distance restraints) 
to a final root mean square derivative of <0.001 kcal/mol/A2. 

(24) Retention of DNA symmetry upon BLM binding and the small 
number and intensity of BLM-DNA NOEs suggest that the structure in 
Figure 4 is not unique. The bithiazole ring-current induced shifts noted, 
for example, could be accommodated by an additional structure in which 
the bithiazole is (partially) intercalated. In this regard, preliminary analysis 
of a Zn-BLM A2-d(CGCT AGCG)2 complex indicates the presence of a 
kinked DNA structure that may favor a (partial) intercalation binding 
mode.1^ The structure shown in Figure 4 represents the lowest energy 
structure consistent with both NMR-derived distance data and the known 
chemistry of BLM-DNA interaction.'8 Two other low-energy structures 
that satisfy the NOE restraints to within 0.2 A were also found. Both 
structures arc groove binding models but differ from the structure shown 
in Figure 4 in that the H-bond from the bithiazole ring nitrogen to the 
2-amino group of Ge is not formed and lhe metal ion lies ca. 5.0 A from 
C7 H4'. 

(25) An average minor groove width of 5.7 A is anticipated for a B-form 
duplex (Conner. B. N.; Takano. T.: Tanaka. S.; Itakura, K.; Dickerson. R. 
E. Nature 1982. 295. 294). In the model, minor groove widths range from 
3.62 to 7.56 A. with the metal binding domain occupying a minor groove 
width of 6.5-7.5 A. Minor groove widths were measured as the shortest 
distances between sugar 04' atoms and phosphate, P atoms across the groove. 
The 0 4 ' - 0 4 ' distances are decreased by 2.8 A, or two oxygen van der 
Waals radii; those for P are decreased by 5.8 A (Yuan, H.; Quintana, J.; 
Dickerson. R. E. Biochemistry 1992. i/,8009). 


